Update on the Measurement of the Branching Ratio of D^0 **g** $K^+\pi^-$ to D^0 **g** $K^-\pi^+$ Jonathan Link University of California Davis Focus Group Meeting August 25, 2000 # D^0 **g** $K^+\pi^-$ Can Occur Through Double Cabibbo Suppression (DCS) or Mixing Followed by a Cabibbo Favored Decay (CF) Standard Model predictions for contributions to the relative branching ratio. $$\tan^4 ?_C \approx 0.25\%$$ $$10^{-7}$$ to 10^{-3} In this study we measure the branching ratio r_{DCS} =DCS/CF. #### **Event Selection** - Loose Wobs cuts: $\Delta W_K > 1/2$ and $\Delta W_{\pi} > -2$, all tracks have consistency > -4. - The primary has at least 2 tracks in addition to the D^0 . - The primary is in target $>-1\sigma$. - ISO1 < 10% - $L/\sigma_L > 5$. - $p_D > -160.+280.abs(p_K p_{\pi})/(p_K + p_{\pi})$ - All tracks have $CL_{\mu} < 1\%$. - Soft π is singly ionized. - Soft π is not identified as an electron by Cerenkov and EM calorimeters. #### Monte Carlo Background Studies Backgrounds from other D^0 decays peak in the D^* signal region! If not dealt with these backgrounds could seriously bias an analysis. #### The Worst BG is CF $K\pi$ Double Mis-id The double mis-id Δm is indistinguishable from the correctly identified signal. So we use a tight Cerenkov based mis-id cut in a $\pm 4\sigma$ window about the D^0 with $K\pi$ reconstructed as πK . #### How do we Treat The Other Mis-id BG's? - We could target K^+K^- and $\pi^+\pi^-$ just like we did with $K^-\pi^+$. This carves holes in the D^0 sidebands. - We could use hard Cerenkov based id cuts everywhere. A big hit in yield and very little improvement in S/N. - Try something completely different. #### A New Method - Divide the data into 1 MeV wide bins in Δm , and fit the D^0 in each bin. - Fit the KK and $\pi\pi$ reflections with Monte Carlo events. #### Fit the Δm Distributions - Fitted D^0 yields are plotted in the appropriate Δm bins. - Background is fit to: $f(m) = a(m m_p)^{1/2} + b(m m_p)^{3/2}$. - DCS signal is fit directly to the CF histogram signal region. # How Wide Should the Masked Region Be? | # Points | BR (%) | X ² /ndf | |----------|-------------------|---------------------| | 8 | 0.456 ± 0.094 | 85.0/69 | | 9 | 0.468 ± 0.094 | 78.4/68 | | 10 | 0.482 ± 0.094 | 70.0/67 | | 11 | 0.485±0.094 | 69.7/66 | | 12 | 0.486±0.094 | 69.6/65 | The branching ratio stabilizes with a mask of 10 points, and the X^2 /ndf of the fit is smallest with a mask of 10 points. #### Systematic Error Studies Fit Variants: 1. Shift bin centers (Bins start at 0.139, 0.13925 and 0.1395). - 2. Vary total number of points in BG (38, 40 and 42). - 3. Fit WS and RS Backgrounds together and separately. - 4. Count entries above BG in signal region. $\sigma_{\text{fit sys}} = 0.0529\%$ total But the fit systematic method of Jim and Rob does not account for the size of the errors! $\sigma_{\text{fit sys}} = 0.0261\%$ without counting method # Cut Variant Systematic Study | Variant | Branching Ratio (%) | |---------------------------------|---------------------| | No electron id on soft π | 0.4795 ± 0.1040 | | No asymmetry cut | 0.4569 ± 0.0973 | | No CL _µ cut | 0.4785 ± 0.0957 | | No multiplicity of primary cut | 0.4785 ± 0.1050 | | Primary in target $> 0\sigma$ | 0.4762 ± 0.0957 | | Primary in target $>-1.5\sigma$ | 0.4895 ± 0.0953 | $$\sigma_{\text{cut sys}} = 0.0099\%$$ # Split Sample Systematic - D^0 - D^0 bar - Z primary > and < -3.75 - $p_D > and < 75 \text{ GeV}$ - Run Number and < 9750 $\sigma_{\text{split sys}} = 0.0337 \ (< \sigma_{\text{stat}} = 0.0937)$ $$\sigma_{\text{split sys}} = 0.0937 \ (p_D \text{ only})$$ Any way you look at this it is still not larger than σ_{stat} . ## **Total Systematic Error** If I use my favored estimates of systematic error $$\sigma_{\text{fit sys}} = 0.0261\%$$ $$\sigma_{\text{cut sys}} = 0.0099\%$$ $$\sigma_{\text{split sys}} = 0.0\%$$ Then... $$\sigma_{\text{total sys}} = 0.0279\%$$ And the branching ratio with full errors would be... $$r_{DCS} = (0.482 \pm 0.093 \pm 0.028)\%$$ # Possible Effects of Mixing • If charm mixing is significant then decay rate as a function of time is: $$r(t/t) = \left\{ r_{DCS} + \sqrt{r_{DCS}} y'(t/t) + \frac{(x'^2 + y'^2)}{4} (t/t)^2 \right\} e^{(-t/t)}$$ $$x' \equiv x \cos d + y \sin d$$ • With $$x' \equiv x \cos d + y \sin d$$, $y' \equiv y \cos d - x \sin d$, $$x \equiv \frac{\Delta m}{\Gamma}$$, $y \equiv \frac{\Delta \Gamma}{2\Gamma}$ and δ is the strong phase. - The measured BR depends on the lifetime acceptance of the analysis. - We use a D^0 **g** $K^-\pi^+$ Monte Carlo to study the effects of mixing on the measured BR (r_{meas}) . $$(D^{0} \to K^{+}p^{-})_{data}^{expected} = \sum_{i}^{MCaccepted} W(t_{i}, x', y', r_{DCS})$$ Where $$W(t, x', y', r_{DCS}) = \frac{CF_{data}^{accepted}}{CF_{MC}^{accepted}} \left(r_{DCS} + \sqrt{r_{DCS}} y'(t/t) + \frac{(x'^2 + y'^2)}{4} (t/t)^2 \right)$$ ### Effects of Mixing Continued • We find r_{DCS} as a function of x', y' and r_{meas} ... $$r_{DCS} = y'^{2} \langle t/t \rangle^{2} - \frac{(x'^{2} + y'^{2})}{4} \langle (t/t)^{2} \rangle + r_{meas} - \frac{y'}{2} \langle t/t \rangle \sqrt{y'^{2} \langle t/t \rangle^{2} - (x'^{2} + y'^{2}) \langle (t/t)^{2} \rangle + 4r_{meas}}$$ ### A First Attempt at a Mixing Study The data is split into 2 sets based on lifetime t. The analysis is run on each data set. The mixing curve of both sets are plotted on top od each other. I looked at two different time splits. Both splits favor negative y', but they are also consistent with zero or even +0.02. #### **Conclusions** • I measure the branching ratio to be: $$r_{DCS} = (0.482 \pm 0.093 \pm 0.028)\%$$ - I'm not yet satisfied with the mathematics of the systematic error. - Early mixing studies using this method don't appear to be very sensitive, but they do prefer a negative value of y'.